http://avto74.com/svechi_zazhiganiya._kakie_i_kuda_vsУсловия, в которых работает свеча.
Условия довольно жёсткие. При вспышке топлива, температура горящей смеси может достигать 2000-2500°С. При частоте вращения двигателя 3000 оборотов в минуту, вспышки будут происходить примерно 25 раз в секунду. От перегрева цилиндр спасает только то, что при выпуске газ резко расширяется и, следовательно, остывает.
В момент взрыва давление в цилиндре превышает 25 атмосфер и свеча испытывает сильные ударные нагрузки. И при этих высоких температурах и давлениях, на свечу воздействует довольно агрессивная среда из паров бензина и выхлопных газов.
3. "Холодные" и "горячие" свечи.
Итак, помним, что температура сгорания топливной смеси около 2000°С. Температура самого двигателя около 100°С. Если свеча сильно раскалится (900-1000°С), возникнет так называемое "калильное" зажигание. То есть смесь будет загораться просто от раскалённых электродов свечи не тогда, когда в свече проскочит искра, а тогда, когда ей вздумается. Соответственно, никакого угла опережения зажигания уже не будет со всеми вытекающими пагубными последствиями для двигателя.
Нормальная рабочая температура свечи около 800°С. Для поддержания такой температуры ( а точнее, не превышение её при длительной езде на высоких оборотах двигателя) необходим отвод тепла от электродов свечи. Чем он эффективнее, тем свеча "холоднее". Эффективность теплоотвода характеризуется так называемым "калильным числом". Чем это число больше, тем эффективнее теплоотввод, тем "холоднее" свеча.
Понятие "холодная" и "горячая" свеча вовсе не эквивалентны температуре свечи. Это просто характеристика эффективности теплоотвода от электродов. Калильное число указывается производителем двигателя и обычно колеблется в диапазоне от 2(горячая) до 12 (холодная).
Надо отдавать себе отчёт, что если в двигатель установить свечи с неправильным
калильным числом, в одном случае возможен перегрев свечи и калильное зажигание на высоких оборотах, в другом случае "недогрев" свечи и образование на ней нагара, состоящего в значительной части из углерода и сильно ухудшающего искрообразование.
Надо помнить, что когда вы медленно движетесь на первой передаче или стоите в пробке, свечи "недогреты" и на них интенсивно образуется (конденсируется) нагар. Именно поэтому производители рекомендуют после движения в пробке проехать пару-тройку километров на приличных оборотах двигателя, чтобы свечи прокалились и очистились от нагара.
Если у вас механическая коробка передач, то совет - лучше ехать на пониженной передаче и высоких оборотах, чем на высокой передаче и низких оборотах. Да и запас крутящего момента будет больше.
Резьбовая часть - одна из важнейших конструктивных характеристик. Длина, диаметр и тип резьбы резьбовой части могут быть различными для разных типов свечей.
Изолятор. Изготавливается из глиноземной керамики, обладает очень высокой диэлектрической проницаемостью (изоляционная характеристика), теплостойкостью и теплопроводностью.
Заполнение специальным порошком, обеспечивает хорошую герметичность и жесткость конструкции. А так же должно компенсироват разницу в коэффициентах линейного теплового расширения металла и керамики.
Медный стержень. Служит сразу двум целям. 1 - улучшение теплоотвода от центрального электрода и его "юбки", 2 - увеличиение температурного диапазона работы свечи. Как - честное слово, не знаю, но вот картинка с сайта NGK:
Искровой промежуток - это собственно то место, где проскакивает искра. В зависимости от особенности системы зажигания двигателя, может быть разным (от 0,7 до 2,0 мм).
Сами электроды изготавливают из специального сплава на основе никеля. Этот сплав позволяет сделать эффективный теплоотвод, устойчив к агрессивной среде и искровому переносу. Иногда центральный электрод делают тонким, тогда приходится делать его, например, из платины.
5. Немного о физике процесса искрообразования.
Снова вспомним школьный курс физики.
Искра - это лавинообразный электрический разряд в газе. Начинается он за счет того, что электрическим полем у молекул газа отрывает электроны, и они летят к положительному электроду, ускоряясь электрическим полем. По дороге они стукаются об молекулы газа и ионизируют их. Получаются новые электроны и положительные ионы. Они, в сою очередь, ускоряясь, ионизируют другие молекулы. Получается лавинообразный разряд, то бишь, искра.
При давлении, близком атмосферному, уравнение для расчета пробивного напряжения в воздухе выглядит примерно так:
Здесь р - давление газа в атм.; d - расстояние между электродами в см; U - в кВ.
При расстоянии между электродами в 1 см и давлении в 1 атмосферу (760 мм.рт.ст.) имеем напряжение пробоя примерно 31 кV.
Сразу оговорюсь, что всё это справедливо для однородного электрического поля. Это когда электроды строго параллельны друг другу и имеют бесконечные размеры. В нашем случае всё далеко не так.
Разрядное напряжение промежутков с резко-неоднородным полем существенно меньше, чем промежутков с однородным полем. Средняя пробивная напряженность для промежутков с резко-неоднородным полем составляет 5-7 кВ/см.
То есть напряжение пробоя у свечи должно быть около 700 V на воздухе и около 5 kV при работе в цилиндре.
На сколько я помню, катушка зажигания выдаёт импульс около 12 kV. То есть этого хватит с запасом, чтобы иметь стабильную искру в искровом промежутке до 2мм. Эсли я ошибся, знатоки меня прправят...
Формула и график взяты из весьма познавательной лекции. Там ещё много интересного

Мы знаем, что локальная напряжённость электрического поля на поверхности проводника пропорциональна кривизне этой поверхности. (Молния в дерево ударяет не потому, что оно высокое, а потому, что оно "острое"). Примерно так должен выглядеть идеальный исковой промежуток.
Вот отсюда и требования к электродам свечи. С одной стороны, они должны быть достаточно массивными, чтобы быстро не разрушиться искровым переносом материала электрода, с другой стороны, они должны быть достаточно малы (остры) в искровом промежутке, чтобы искра была стабильной и в одном месте.
На самом деле электроды выглядят примерно так.
Искра пролетает там, где ей вздумается в искровом промежутке. Ну или там, где расстояние чуть меньше. Зависит от выработки электродов.
Это вообще-то не очень критично, лишь бы смесь загорелась, однако может влиять на фронт распространения горения смеси в цилиндре. А это даст эффект чуть "гуляющего" угла опережения зажигания.
Для того, чтобы сделать этот процесс более стабильным, идут двумя путями. Во-первых, уменьшают размер плюсового электрода, что ведёт с усложнению и удорожанию конструкции. Электроды делают из платины и иридия. Во-вторых, делают так называемый Y-пропил на плюсовом электроде. Тогда искра проскакивает по краям искрового промежутка.
На таких свечах в маркировке присутствует буква "Y".
Ну и хватит, пожалуй про физику. Можно, конечно порассуждать на тему мощности искры (тока в искровом промежутке), однако этот ток достаточно мал. Он гасится сопротивлением высоковольтных проводов и встроенным в свечу сопротивлением. В противном случае мы получили бы очень мощный вибратор Герца, который наводил бы высокочастотные наводки на всё мыслимое электрооборудование вокруг, и в первую очередь на магнитолу, мобильные телефоны и тому подобное.
Ещё можно вспомнить про понятие "угол опережения зажигания" и вообще зачем оно (опережение) нужно, чем и как регулируется и на что влияет. Но как говорил Козьма Прутков - "Нельзя объять необъятное".